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Abstract. The spectra of baryonic systems with strangeness, charm and bottom are considered within
a “rigid oscillator” version of the bound state soliton model. The static properties of multiskyrmions,
of baryon number up to B = 8, are calculated using the recently suggested rational map ansaetze as
starting field configurations. The property of binding of flavoured mesons by an SU(2) skyrmion is proved
rigorously within this model. Binding energy estimates are made of the states with largest isospin which can
appear as negatively charged nuclear fragments and for states with zero isospin – fragments of “flavoured”
nuclear matter. It is shown that for all types of flavour and for |F | ≤ 2 the isoscalar baryonic systems
have a better chance to be stable against strong and electromagnetic interactions than those with nonzero
isospin. Baryonic systems with charm or bottom quantum numbers are found to be bound more than
strange baryonic systems.

1 Introduction

The problem of the existence of fragments of baryonic
matter with unusual properties, such as their flavour be-
ing different from that of u and d quarks, has a rather
long history but, so far, has not been resolved. One of the
difficulties is connected with the absence of a complete
relativistic theory of many-body bound states. In addi-
tion to being of general interest, this issue can have im-
portant consequences in astrophysics and cosmology. In
particular, the formation and subsequent decay of such
fragments could be important in the early stages of the
evolution of the Universe.

The topological soliton models, and the Skyrme model
among them [1], provide a reasonable way to “circumvent”
the unsolved questions and to obtain predictions for the
spectrum of states possessing strangeness, charm or bot-
tom quantum numbers. The models of this kind are at-
tractive because being based on only a few fundamental
principles and basic ingredients they are not only simple
but may also well describe various properties of low energy
baryons,

The description of skyrmions with large baryon num-
bers has long been perceived as being difficult because the
explicit form of the fields is not known. The recent obser-
vation [2] that the fields of the SU(2) skyrmions can be ap-
proximated accurately by rational map ansaetze giving the
values of masses close to their precise values has consider-
ably simplified the task of such studies. Similar ansaetze
have also been recently presented for SU(N) skyrmions
(which are not embeddings of SU(2) fields) [3].

In this paper we use the SU(2) rational map ansaetze
as the starting points for the calculation of static proper-
ties of bound states of skyrmions necessary for their quan-
tization in the SU(3) collective coordinate space. The en-
ergy density of the B = 3 configuration has tetrahedral
symmetry, of B = 4 the octahedral (cubic) one [4], of
B = 5 D2d symmetry, of B = 6 D4d, of B = 7 dodecahe-
dral symmetry, and of B = 8 D6d symmetry [5,2], etc.

The minimisation, with the help of a 3-dimensional
variational program [6], lowers the energies of these con-
figurations by a few hundreds of MeV and shows that they
become local minima in the SU(3) configuration space.
The knowledge of the so-called “flavour” moment of iner-
tia and the Σ term allows then to estimate the flavour ex-
citation energies. The mass splittings of the lowest states
with different values of strangeness, charm or bottom are
calculated within the rigid oscillator version of the bound
state approach. The binding energies of baryonic systems
(BS) with different values of flavours are also estimated.

To reduce theoretical uncertainties we consider the dif-
ferences between the binding energies of BS with flavour
F and the ground state for each value of B. These ground
states are the deuteron for B = 2, the isodoublet 3H–3He
for B = 3, 4He for B = 4, etc. These differences, being
free of many uncertainties and in particular of the poorly
known loop corrections to classical masses, show the ten-
dency of the flavoured BS to be more bound than the (u, d)
ground states (for heavy flavours), or to be less bound, as
for strangeness. Of course, we have made the assumption
here that the ground states of multiskyrmions correspond
to ordinary nuclei. However, this is a natural assumption
if we believe that effective field theories describe nature.
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In the next section we present a description of the
static properties of multiskyrmions. Flavour excitation en-
ergies and zero mode corrections to the energies of multi-
baryons are considered in Sect. 3. Section 4 contains esti-
mates of the binding energies of baryonic systems with
different values of flavours, and our conclusions are given
in Sect. 5.

2 Static properties of multiskyrmions

We consider here simple SU(3) extensions of the Skyrme
model [1]: we start with SU(2) skyrmions (with flavours
corresponding to (u, d) quarks) and extend them to vari-
ous SU(3) groups, such as (u, d, s), (u, d, c), or (u, d, b).

For the Lagrangian we take the usual expression of
the Skyrme model which, in its well-known form, depends
on parameters Fπ, FD and e and can be written in the
following way [7]:

L = −F 2
π

16
Trlµlµ +

1
32e2Tr[lµ, lν ]

2

+
F 2

πm
2
π

16
Tr(U + U† − 2)

+
F 2

Dm2
D − F 2

πm
2
π

24
Tr(1−

√
3λ8)(U + U† − 2)

+
F 2

D − F 2
π

48
Tr(1−

√
3λ8)(Ulµl

µ + lµl
µU†). (1)

Here U ∈ SU(3) is a unitary matrix incorporating chiral
(meson) fields, and lµ = U†∂µU . In this model Fπ is fixed
at the physical value: Fπ = 186 MeV and MD is the mass
of K,D or B meson. The ratios FD/Fπ are known to be
1.22 and 1.7± 0.2 for, respectively, kaons and D mesons.

The flavour symmetry breaking term (FSB) in the La-
grangian is of the usual form and is sufficient to describe
the mass splittings of the octet and decuplets of baryons
within the collective coordinate quantization approach [7].

The Wess–Zumino term, to be added to the action,
which, as is well known [8], can be written as a 5-di-
mensional differential form, plays an important role in the
quantization procedure:

SWZ =
−iNc

240π2

∫
Ω

d5xεµνλρσTr(lµlν lλlρlσ), (2)

where Ω is a 5-dimensional region with the 4-dimensional
space-time as its boundary and where lµ are 5-dimensional
extensions of lµ = U†∂µU . Action (2) is responsible for im-
portant topological properties of skyrmions, but it does
not contribute to the static masses of classical configura-
tions [8,9]. The variation of this action can be presented
as a well-defined contribution to the Lagrangian (integral
over the 4-dimensional space-time).

We begin our calculations, however, with U ∈ SU(2).
The classical mass of SU(2) solitons, in the most general
case, depends on three profile functions: f, α and β and is
given by

Mcl =
∫ {

F 2
π

8
[�l21 +�l22 +�l23]

+
1
2e2 [[

�l1�l2]2 + [�l2�l3]2 + [�l3�l1]2]

+
1
4
F 2

πm
2
π(1− cf )

}
d3r. (3)

Here �lk are the SU(2) chiral derivatives defined by U†�∂U
= i�lkτk, where k = 1, 2, 3. The general parametrisation
of U0 for an SU(2) soliton that we use here is given by
U0 = cf + sf�τ�n with nz = cα, nx = sαcβ , ny = sαsβ ,
sf = sin f , cf = cos f , etc. For the rational map ansatz
that we will use here as our starting configurations,

nx =
2ReR(ξ)
1 + |R(ξ)|2 , ny =

2ImR(ξ)
1 + |R(ξ)|2 ,

nz =
1− |R(ξ)|2
1 + |R(ξ)|2 ,

where R(ξ) is a ratio of polynomials (of the maximal de-
gree B) in the variable ξ = tg(θ/2) exp(iφ). θ and φ are
the polar and azimuthal angles defining the direction of
the radius vector �r. The explicit form of R(ξ) is given in
[2] for different values of B.

The “flavour” moment of inertia plays a very impor-
tant role in the procedure of SU(3) quantization [10–18];
see (9) and (10) below, and for arbitrary SU(2) skyrmions
is given by [17,19]

ΘF =
1
8

∫
(1− cf )

[
F 2

D +
1
e2

(
(�∂f)2 + s2

f (�∂α)
2

+ s2
fs

2
α(�∂β)

2
)]

d3�r. (4a)

It is simply connected with Θ
(0)
F of the flavour symmetric

case (FD = Fπ):

ΘF = Θ
(0)
F + (F 2

D/F 2
π − 1)Γ/4, (4b)

with Γ defined in (5) below. The isotopic moments of
inertia are the components of the corresponding tensor of
inertia. They have been discussed in many papers, see e.g.
[9–12], so we will not present them here. For the majority
of multiskyrmions we are discussing here, this tensor of
inertia is close to the unit matrix multiplied by the isotopic
moment of inertia ΘT . This is exactly the case for B = 1
and, to within a good accuracy, for B = 3, 7. Considerable
deviations take place for the B = 2 torus, and smaller ones
for B = 4, 5, 6 and 8; see Table 1. The quantity Γ (or the
Σ term), which defines the contribution of the mass term
to the classical mass of solitons, and Γ̃ are used directly
in the quantization procedure. They are given by

Γ =
F 2

π

2

∫
(1− cf )d3�r, (5)

Γ̃ =
1
4

∫
cf [(�∂f)2 + s2

f (�∂α)
2 + s2

fs
2
α(�∂β)

2]d3�r.

The following relation can also be established: Γ̃ =
2(M (2)

cl /F 2
π − e2ΘSk

F ), where M
(2)
cl is the second-order con-

tribution to the classical mass of the soliton, and ΘSk
F is
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Table 1. Characteristics of the bound states of skyrmions with baryon numbers up to B = 8. The classical
mass of solitons Mcl is in GeV, moments of inertia ΘF , ΘT and ΘT,3, Γ and Γ̃ - in GeV −1, the excitation
frequencies for flavour F , ωF in GeV. cs,c,b and c̄s,c are the hyperfine splitting constants for multibaryons
defined in (21a) and (21b). The constant c̄b is close to 0.99 for all B and is not included in the Table. The
external parameters of the model are Fπ = 186MeV, e = 4.12. The accuracy of calculations is better than
1% for the masses and few % for other quantities. The B = 1 quantities as well as B = 2 quantities for
the torus calculated previously, are shown for comparison

B Mcl Θ
(0)
F ΘT ΘT,3 Γ Γ̃ ωs ωc ωb cs cc cb c̄s c̄c

1 1.702 2.04 5.55 5.55 4.83 15.6 0.309 1.542 4.82 0.28 0.27 0.52 0.54 0.91
2 3.26 4.18 11.5 7.38 9.35 22 0.293 1.511 4.76 0.27 0.24 0.49 0.53 0.90
3 4.80 6.34 14.4 14.4 14.0 27 0.289 1.504 4.75 0.40 0.37 0.58 0.60 0.92
4 6.20 8.27 16.8 20.3 18.0 31 0.283 1.493 4.74 0.47 0.44 0.62 0.64 0.92
5 7.78 10.8 23.5 19.5 23.8 35 0.287 1.505 4.75 0.42 0.40 0.60 0.62 0.92
6 9.24 13.1 25.4 27.7 29.0 38 0.287 1.504 4.75 0.48 0.46 0.63 0.67 0.93
7 10.6 14.7 28.9 28.9 32.3 44 0.282 1.497 4.75 0.48 0.46 0.64 0.66 0.93
8 12.2 17.4 33.4 31.4 38.9 47 0.288 1.510 4.79 0.49 0.47 0.64 0.67 0.93

the Skyrme term contribution to the flavour moment of
inertia. The calculated masses of solitons, moments of in-
ertia ΘF , ΘT , Γ or Σ term and Γ̃ are presented in Table 1
above.

As can be seen from Tables 1 and 2, there are two “is-
lands” of stability for the baryon numbers considered here:
at B = 4, which is not unexpected, and for B = 7, and
this appears to be new. So far, this property seems to be
specific to the Skyrme model. The difference between ΘT

and ΘT,3 is maximal for the toroidal B = 2 configuration
and decreases with increasing B. It vanishes for B = 3
and 7. The accuracy of the calculation decreases with in-
creasing B. It is difficult to estimate this accuracy for such
quantities as ωF and cF (see Sect. 3) as their values de-
pend also on the particular method of calculation – the
rigid oscillator model in our case.

The behaviour of static properties of multiskyrmions
and flavour excitation frequencies shown in Table 1 is simi-
lar to that obtained in [22] for toroidal configurations with
B = 2, 3, 4. We note that the flavour moment of inertia
ΘF,B and the sigma term ΓB increase with B almost pro-
portionally to B.

3 Flavour excitation frequencies
and ∼ 1/Nc zero mode corrections

To quantize the solitons in their SU(3) configuration
space, in the spirit of the bound state approach to the
description of strangeness proposed in [13,14] and used in
[15–17], we consider the collective coordinate motion of
the meson fields incorporated into the matrix U :

U(r, t) = R(t)U0(O(t)�r)R†(t), R(t) = A(t)S(t), (6)

where U0 is the SU(2) soliton embedded into SU(3) in
the usual way (into the upper left hand corner) and A(t) ∈
SU(2) describes SU(2) rotations. Moreover, S(t) ∈ SU(3)
describes rotations in the “strange”, “charm” or “bottom”
directions and O(t) describes rigid rotations in real space.

For definiteness we consider the extension of the (u, d)
SU(2) Skyrme model in the (u, d, s) direction, when D is
the field of K mesons, but it is clear that quite similar
extensions can also be made in the directions of charm or
bottom. So

S(t) = exp(iD(t)), D(t) =
∑

a=4,...7

Da(t)λa, (7)

where λa are the Gell-Mann matrices of the (u, d, s), (u, d,
c) or (u, d, b) SU(3) groups. The (u, d, c) and (u, d, b)
SU(3) groups are quite analogous to the (u, d, s) one.
For the (u, d, c) group a simple redefiniton of hypercharge
should be made. For the (u, d, s) group, D4 = (K+ +
K−)/21/2, D5 = i(K+ − K−)/21/2, etc. For the (u, d, c)
group D4 = (D0 + D̄0)/21/2, etc.

The angular velocities of the isospin rotations �ω are
defined in the standard way [9]: A†Ȧ = −i�ω�τ/2. We shall
not consider here, in much detail, the usual space rotations
because the corresponding moments of inertia for BS are
much greater than the isospin moments of inertia, and
for the lowest possible values of the angular momentum
J , the corresponding quantum correction is either exactly
zero (for even B), or small; see also (17a), (17b), (21a)
and (21b) below.

The field D is small in magnitude. In fact, it is at least
of order 1/N1/2

c , where Nc is the number of colours in
QCD; see (14). Therefore, the expansion of the matrix S
in the powers of D can be made safely.

The mass term of the Lagrangian (1) can be calculated
exactly, without expansion in the powers of the field D,
because the matrix S is given by S = 1 − iD sin d/d −
D2(1− cos d)/d2 with d2 = TrD2. We find that

∆LM = −F 2
Dm2

D − F 2
πm

2
π

4
(1− cf )s2

d. (8)

The expansion of this term can be done easily up to any
order in d. The comparison of this expression with ∆LM ,
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within the collective coordinate approach of the quanti-
zation of SU(2) solitons in the SU(3) configuration space
[10–12], allows us to establish the relation sin2 d = sin2 ν,
where ν is the angle of the λ4 rotation, or the rotation
into the “strange” (“charm”, “bottom”) direction.

After some calculations we find that the Lagrangian
of the model, to the lowest order in the field D, can be
written as

L = −Mcl,B + 4ΘF,BḊ†Ḋ −
[
ΓB

(
F 2

D

F 2
π

m2
D − m2

π

)

+ Γ̃B(F 2
D − F 2

π )
]
D†D

− i
NcB

2
(D†Ḋ − Ḋ†D). (9)

Here and below D is the doublet (K+,K0)T , (D0, D−)T ,
or (B+, B0)T ; D†D = d2/2. We have kept the standard
notation for the moment of inertia of the rotation into the
“flavour” direction ΘF for Θc, Θb or Θs [10–12]; differ-
ent notations are used in [15,16] (the index c denotes the
charm quantum number, except in Nc). The contribution
proportional to Γ̃B is suppressed in comparison with the
term ∼ Γ by a small factor ∼ (F 2

D −F 2
π )/m

2
D, and is more

important for the strangeness.
The term proportional to NcB in (9) arises from the

Wess–Zumino term in the action and is responsible for the
difference of the excitation energies of strangeness and an-
tistrangeness (flavour and antiflavour in the general case)
[13–16].

Following the canonical quantization procedure the
Hamiltonian of the system, including the terms of the or-
der of N0

c , takes the form [15,16]

HB = Mcl,B +
1

4ΘF,B
Π†Π

+
[
ΓBm̄2

D + Γ̃B(F 2
D − F 2

π ) +
N2

c B
2

16ΘF,B

]
D†D

+ i
NcB

8ΘF,B
(D†Π − Π†D), (10)

where m̄2
D = (F 2

D/F 2
π )m

2
D − m2

π. The momentum Π is
canonically conjugate toD (see (18) below). Equation (10)
describes an oscillator-type motion of the field D in the
background formed by the (u, d) SU(2) soliton. After the
diagonalization, which can be done explicitly following [15,
16], the normal-ordered Hamiltonian can be written as

HB = Mcl,B + ωF,Ba†a+ ω̄F,Bb†b+O(1/Nc), (11)

with a†, b† being the operators of creation of strangeness
(i.e. of antikaons) and antistrangeness, (flavour and anti-
flavour) quantum number, ωF,B and ω̄F,B being the fre-
quencies of flavour (antiflavour) excitations. D and Π are
connected with a and b in the following way [15,16]:

Di =
1√

NcBµF,B

(bi + a†i),

Πi =

√
NcBµF,B

2i
(bi − a†i) (12)

with

µF,B = [1 + 16(m̄2
DΓB

+ (F 2
D − F 2

π )Γ̃B)ΘF,B/(NcB)2]1/2. (13)

For the lowest states the values of D are small:

D ∼ [16ΓBΘF,Bm̄2
D +N2

c B
2]−1/4, (14)

and increase, with increasing flavour number |F |, like
(2|F |+ 1)1/2. As was noted in [16], deviations of the field
D from the vacuum decrease with increasing mass mD,
as well as with increasing number of colours Nc, and the
method works well for any mD (and also for the charm
and bottom quantum numbers).

The excitation frequencies ω and ω̄ are

ωF,B =
NcB

8ΘF,B
(µF,B − 1),

ω̄F,B =
NcB

8ΘF,B
(µF,B + 1).

(15)

As was observed in [17], the difference ω̄F,B − ωF,B =
NcB/(4ΘF,B) coincides, to the leading order in Nc, with
the expression obtained in the collective coordinate ap-
proach [18,19]. At large mD, we have µF,B 	 4m̄D

(ΓBΘF,B)1/2/(NcB), and for the flavour excitation energy
we obtain (Nc = 3)

ωF,B 	 m̄D

2

(
ΓB

ΘF,B

)1/2

− 3
8

B

ΘF,B
. (16a)

Since m̄D < FDmD/Fπ and ΘF,B > F 2
DΓB/(4F 2

π ), see
(4a) and (4b), it follows from (16a) that the excitation en-
ergies ωF,B are always smaller than the corresponding me-
son masses mD, i.e. we have rigorously established, within
the model used here, the binding of flavoured mesons by
an SU(2) skyrmion.

For the difference ωF,1 − ωF,B we obtain

ωF,1 − ωF,B 	 m̄D

2

[(
Γ1

ΘF,1

)1/2

−
(

ΓB

ΘF,B

)1/2
]

+
3
8

(
B

ΘF,B
− 1

ΘF,1

)
. (16b)

Obviously, at large mD, the first term in (16b) dominates
and is positive if Γ1/ΘF,1 ≥ ΓB/ΘF,B . This is confirmed
by looking at Table 1. Note also that the bracket in the
first term in (16b) does not depend on the parameters of
the model if the background SU(2) soliton is calculated
in the chirally symmetrical limit as both Γ and Θ scale
like ∼ 1/(Fπe

3). In a realistic case when the physical pion
mass is included in (3) there is some weak dependence on
the parameters of the model.

The FSB in the flavour decay constants, i.e. the fact
that FK/Fπ 	 1.22 and FD/Fπ = 1.7± 0.2 should also be
taken into account. In the Skyrme model this fact leads
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to the increase of the flavour excitation frequencies which
changes the spectra of flavoured (c, b) baryons and puts
them in a better agreement with the data [20,21]. It also
leads to some changes of the total binding energies of BS
[17]. This is partly due to the large contribution of the
Skyrme term to the flavour moment of inertia ΘF . Note
that in [16] the FSB in the strangeness decay constant
was not taken into account, and this has led to the under-
estimation of the strangeness excitation energies. Heavy
flavours (c, b) have not been considered in these papers.

The terms of the order of N−1
c in the Hamiltonian,

which depend on the angular velocities of rotations in the
isospin and the usual space and which describe the zero
mode contributions, are not crucial but are important for
the numerical estimates of the spectra of baryonic sys-
tems. To calculate them one should first obtain the La-
grangian of BS including all the terms up to O(1/Nc).
The Lagrangian can be written in a compact form as

L 	 −Mcl + 4ΘF,B

[
Ḋ†Ḋ

(
1− d2

3

)

− 2
3
(D†ḊḊ†D − (D†Ḋ)2 − (Ḋ†D)2)

]

+ 2ΘF,B(�ω�β) +
ΘT,B

2
(�ω − �β)2

− [ΓBm̃2
D + (F 2

D − F 2
π )Γ̃B ]D†D

(
1− d2

3

)

+ i
NcB

3

(
1− d2

3

)
(Ḋ†D − D†Ḋ)− NcB

2
�ωD†�τD,

(17a)

where d2 = 2D†D and

�β = −i(Ḋ†�τD − D†�τḊ).

For the axially symmetrical configurations, like the B =
2 torus, the term ΘT,B(ω3 − β3)2/2 in (17a) should be
replaced by

δL =
Θ3,B

2
(ω3 − nΩ3 − β3)2 +

ΘJ,B

2
(Ω2

1 +Ω2
2), (17b)

where Ωi are the components of the angular velocities of
rotation in the usual space, ȮinOkn = εiklΩl. Taking into
account the terms ∼ 1/Nc we find that the canonical vari-
able Π conjugate to D is

Π =
∂L

∂Ḋ†

= 4ΘF,B

[
Ḋ

(
1− d2

3

)
− 2

3
D†ḊD +

4
3
Ḋ†DD

]
+ i(ΘT,B − 2ΘF,B)�ω�τD − iΘT,B

�β�τD

+ i
NcB

2

(
1− d2

3

)
D. (18)

From (17a) the body-fixed isospin operator is

�Ibf = ∂L/∂�ω = ΘT,B�ω + (2ΘF,B − ΘT,B)�β

− NcB

2
D†�τD. (19)

Using the identities

−i�β�τD = 2D†DḊ − (Ḋ†D +D†Ḋ)D (20a)

and

�β2 = 4D†DḊ†Ḋ − (Ḋ†D +D†Ḋ)2, (20b)

we find that the ∼ 1/Nc zero mode quantum corrections
to the energies of skyrmions can be estimated [15,16] as

∆E1/Nc
=

1
2ΘT,B

[cF,BTr(Tr + 1) + (1− cF,B)I(I + 1)

+ (c̄F,B − cF,B)IF (IF + 1)], (21a)

where I = Ibf is the value of the isospin of the baryon or
BS, which can be written also as

�Ibf = ΘT �ω +
(
1− ΘT

2ΘF

)
�IF − NcBΘT

4ΘF
D†�τD, (22)

with the operator �̂IF = (b†�τb − aT�τa†T )/2.
Tr is the quantity analogous to the “right” isospin Tr,

in the collective coordinate approach [10,18], and �Tr =
�Ibf − �IF . The hyperfine structure constants cF,B and c̄F,B

are defined by the relations

1− cF,B =
ΘT,B

2ΘF,BµF,B
(µF,B − 1),

1− c̄F,B =
ΘT,B

ΘF,B(µF,B)2
(µF,B − 1). (23)

To take into account the usual space rotations the J-
dependent terms should be added to (21a). For the axially
symmetrical configurations, like the B = 2 torus, they are
equal to [18,16]

∆EJ
1/Nc

=
(

1
2n2Θ3,B

− 1
2n2ΘT,B

− 1
2ΘJ,B

)
(Jbf

3 )2

+
J(J + 1)
2ΘJ,B

, (21b)

with ΘJ,B being the moment of inertia corresponding to
the usual space rotations – the orbital moment of inertia,
which is known to increase with increasing B number al-
most proportionally to B2 [17,23]. For such configurations
the body-fixed 3–d component of the angular momentum
Jbf

3 and the nonstrange part of the 3–d component of the
isospin (also body-fixed) are connected by the relation
Jbf

3 = −nT bf
r,3 (see e.g. [18,16] and references therein). Re-

alistic cases of multiskyrmions are intermediate between
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the case of incoherence of usual space and isospace rota-
tions and the complete coherence, as in (21b) for the rota-
tion relative to the axis of axial symmetry. However, the
J-dependent terms of the type (21b) cancel in the differ-
ences of energies of states which belong to the same SU(3)
multiplet, i.e. which have the same values of J, (p, q) and
Tr,3.

In the case of antiflavour excitations we obtain the
same formulas with the substitution ω → ω̄ in the expres-
sion for the energy of the state and µ → −µ in (23). For
example,

c̄F̄ ,B = 1 +
ΘT,B

ΘF,Bµ2
F,B

(µF,B + 1). (24)

The excitation energies for antiflavours are close to ∼
0.59GeV for antistrangeness, ∼ 1.75GeV for anticharm
and to ∼ 4.95GeV for antibottom. However, these num-
bers should be considered as lower bounds only since to
calculate them we have used a simplified version of the
bound state soliton model.

4 Estimates of the spectra of multibaryons
with strangeness, charm or bottom

In the bound state soliton model, and in its rigid oscillator
version as well, the states predicted do not correspond to
the definite SU(3) or SU(4) representations. How this can
be remedied was shown in [16]; see also (26)–(29) below.
The quantization condition (p+ 2q)/3 = B [10], for arbi-
trary Nc, changes to (p + 2q) = NcB + 3nqq̄, where nqq̄

is the number of additional quark–antiquark pairs present
in the quantized state [18]. For example, the state with
B = 1, |F | = 1, I = 0 and nqq̄ = 0 should belong to
the octet of (u, d, s), or (u, d, c), SU(3) group, if Nc = 3;
see also [16]. The state with B = 2, |F | = 2 and I = 0
should belong to the 27-plet of the corresponding group,
etc. The states having antiflavour quantum number, i.e.
positive strangeness or bottom quantum number or nega-
tive charm should have nqq̄ ≥ |F | [18]. If ΘF → ∞, (21a)
and (21b) go over into the expressions obtained within the
collective coordinate approach [10,17]. In a realistic case,
with ΘT /Θ

(0)
F ∼ 2–2.7, the structure of (21a) and (21b) is

more complicated.
First we consider quantized states of BS which belong

to the lowest possible SU(3) irreps (p, q) for each value
of the baryon number, p + 2q = 3B: p = 0, q = 3B/2 for
even B, and p = 1, q = (3B−1)/2 for odd B. For B = 3, 5
and 7 they are 3̄5, 8̄0 and ¯143-plets, for B = 2, 4, 6 and
8–1̄0, 2̄8, 5̄5 and 9̄1-plets. Since we are interested in the
lowest energy states, we discuss here the baryonic systems
with the lowest allowed angular momentum, i.e. J = 0,
for B = 2, 4, 6 and 8. For odd B the quantization of BS
encounters some difficulties (see [23]), but the correction
to the energy of quantized states due to the nonzero an-
gular momentum is small and decreases with increasing B
since the corresponding moment of inertia increases pro-
portionally to ∼ B2 [22,23]. Moreover, the J-dependent

correction to the energy cancels in the differences of ener-
gies of flavoured and flavourless states.

For the energy difference between the state with
flavour F belonging to the (p, q) irrep, and the ground
state with F = 0 and the same angular momentum and
(p, q) we obtain

∆EB,F = |F |ωF,B +
µF,B − 1
4µF,BΘF,B

[I(I + 1)− Tr(Tr + 1)]

+
(µF,B − 1)(µF,B − 2)

4µ2
F,BΘF,B

IF (IF + 1), (25)

where Tr = p/2 and usually IF = I−Tr. According to (25),
the mass splittings within the same SU(3) irrep (p, q) are
defined by flavour inertia ΘF,B and also ΓB which enters
through µF,B . The moment of inertia ΘT enters the dif-
ference of energies between different irreps. Obviously, for
“minimal” BS, i.e. those which do not contain additional
quark–antiquark pairs,

Tr ≤ 3B/2. (26)

The isospin carried by |F | flavoured mesons bound by
(u, d) solitons satisfies another obvious relation:

IF ≤ |F |/2. (27)

Simple arguments allow us also to get the following re-
strictions on the total isospin of BS:

|Tr − |F |/2| ≤ I ≤ Tr + |F |/2 (28)

and

I ≤ (3B − |F |)/2. (29)

The lowest of the two upper bounds should be taken as
the final upper bound. It is easy to check that our bounds
correspond to the known SU(3) multiplets for each value
of Tr.

For fixed B, SU(3) multiplet (p, q) and IF = |F |/2,
the state of the minimal energy is the state of the lowest
isospin I, as follows from (25). But to reach the conclusion
concerning the stability of any state against its decay due
to strong interactions one should compare its energy with
the energy of possible final states consisting of separate
baryons and satisfying the requirement of conservation of
charge, flavour and isospin. Since different baryons have
different energies, the most stable state will not necessarily
be the multibaryon of the lowest energy.

For the B = 1 case, the difference of masses within the
octet of baryons, ΛF and N , ΣF and ΛF , is

∆MΛF N = ωF,1 − 3(1− c̄F,1)
8ΘT,1

= ωF,1 − 3(µF,1 − 1)
8µ2

F,1ΘF,1
,

∆MΣF ΛF
=

(1− cF,1)
ΘT,1

=
µF,1 − 1
2µF,1ΘF,1

,

MΞ +MN − 2MΛ =
3(µF,1 − 1)
4µ2

F,1ΘF,1
. (30)
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Clearly, the binding energy of the multiskyrmion cancels
out in (25). For states with maximal isospin I = Tr+|F |/2,
the energy difference (25) can be simplified to

∆EB,F = |F |
[
ωF,B + Tr

µF,B − 1
4µF,BΘF,B

+
(|F |+ 2)
8ΘF,B

(µF,B − 1)2

µ2
F,B

]
. (31)

For even B, Tr = 0; for odd B, we should take Tr = 1/2
for the lowest SU(3) irreps.

It follows from (30) and (31) that when some nucleons
are replaced by flavoured hyperons (Λs) in BS the binding
energy of the system changes by

∆εB,F = |F |
[
ωF,1 − ωF,B − 3(µF,1 − 1)

8µ2
F,1ΘF,1

− Tr
µF,B − 1
4µF,BΘF,B

− (|F |+ 2)
8ΘF,B

(µF,B − 1)2

µ2
F,B

]
. (32)

This expression is valid for |F | = 1 or when the number
of nucleons is large enough to satisfy the isospin conser-
vation requirement. In some remaining cases it should be
modified. For |F | = 2, in view of the isospin conserva-
tion law we should consider ΣFΛF for B = 2 (I = 1)
and ΞFNN for B = 3 (I = 3/2) as the available final
states. Similarly, for |F | = 3 and 4 and small B numbers
we should insert ΣFΛF or ΞFN pairs instead of ΛFΛF to
satisfy the isospin conservation. As a result, the binding
energy relative to the transition to the mentioned states
increases in comparison with only the ΛFN final states. A
transition into such states will be possible, however, due
to the electromagnetic interaction which does not conserve
the isospin. For example, the state with B = 3, S = −3
is bound relative to the ΞΣN final state by 23MeV, but
could decay electromagnetically into the ΛΛΣ final state
if it is allowed by the electric charge conservation law. The
state with B = 3, S = −4, I = 5/2 is stable with respect
to the strong decay into the ΞΣΣ state, but could decay
electromagnetically into ΞΣΛ.

For strangeness the binding energy difference (32) is
mostly negative indicating that stranglets should have
binding energies smaller than those of nuclei, or could be
unbound. Since ΘF,B and ΘT,B increase with increasing B
and mD, this leads to the increase of binding with increas-
ing B and with the mass of the flavoured state, in agree-
ment with [17]. For charm and bottom (32) is positive for
B ≥ 3 or 4. It follows from Table 2 that dibaryons with
strangeness or charm are probably unbound, but those
with b = −1 or b = −2 could be bound. The multibaryons
with B ≥ 4 and S = −1 can be bound, as well as multi-
baryons with c = 1, 2 or 3, or bottom b = −1,−2.

Had the moments of inertia of BS at small values of
B been proportional to the baryon number B, then the
values of µ, excitation frequencies ωF and coefficients c
would not have depended on B at all. In this case the
binding energy would have consisted only of its classical

part and a contribution from zero modes; the difference of
ω’s would have been absent in this case.

Nuclear fragments with sufficiently large values of the
strangeness (or bottom) may be found in experiments as
fragments with negative charge Q, according to the well-
known relation, Q = T3 + (B + S)/2 (similarly for the
bottom number). Recently one event of a long lived nu-
clear fragment with mass about 7.4 GeV was reported in
[25]. Using the above formulas it is not difficult to estab-
lish that this fragment may be the state with B = −S = 6,
or B = 7 and strangeness S = −4, or −3; see also Table 3
below. Greater strangeness values are not excluded since
the method used here overestimates the flavour excitation
energies, especially for smaller baryon numbers and for
the strangeness quantum number.

Another case of interest involves considering the BS
with isospin I = 0. In this case IF = Tr = |F |/2, so such
states do not belong to the lowest possible SU(3) multiplet
for each value of B (except for the case |F | = 1). For the
energy difference between this state and a flavourless state
belonging to the same SU(3) irrep it is easy to obtain

∆EB,F = |F |
[
ωF,B − (|F |+ 2)

8ΘF,B

(µF,B − 1)
µ2

F,B

]
. (33)

For the difference of binding energies of such a state and
the ground (u, d) state with lowest values (pmin, qmin) we
have the following estimate:

∆εB,F = |F |
[
ωF,1 − ωF,B − 3(µF,1 − 1)

8ΘF,1µ2
F,1

+
(|F |+ 2)
8ΘF,B

(µF,B − 1)
µ2

F,B

]

− 1
2ΘT,B

[|F |(|F |+ 2)/4

− Tmin
r (Tmin

r + 1)], (34)

where Tmin
r = 0, or 1/2. Using this formula we find the

values given in Table 3. For example, the B = 2, |F | = 2
state discussed previously in [18] and later in [16] belongs
to the 27-plet of the corresponding SU(3) group. In the
case of strangeness it has already appeared, probably, as
a virtual level in the ΛΛ system [24].

We can see from Table 3 that for |F | = 1 and partly
for |F | = 2 the isoscalar states have more chance to be
bound than states presented in Table 2. The B = 7, S =
−3, I = 0 state has a binding energy smaller than the
(u, d) nucleus by 42MeV, i.e. it can be stable with respect
to the strong decay, if we take into account the uncer-
tainty of our estimates (recall that the nucleus 7Li has a
total binding energy of 39MeV.) The state with isospin
equal to 2 – the maximal value for S = −3 within the
(1, 10) SU(3) multiplet – has a somewhat greater energy;
see Table 2. The difference of energies of states with isospin
I = Imax = Tr + |F |/2 and I = 0, and the same value of
F can be written as

EImax − EI=0 = ∆εI=0
B,F − ∆εI

max

B,F
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Table 2. The binding energy differences ∆εs,c,b are the changes of binding energies of lowest
BS with flavour s, c or b and isospin I = Tr + |F |/2 in comparison with the usual u, d nuclei,
for the flavour numbers S = −1, −2, −3 and −4, c = 1, 2 and 3, b = −1 and −2 (see (32)). The
SU(3) multiplets are (p, q) = (0, 3B/2) for even B and (p, q) = (1, (3B − 1)/2) for odd B

B ∆εs=−1 ∆εc=1 ∆εb=−1 ∆εs=−2 ∆εc=2 ∆εb=−2 ∆εs=−3 ∆εc=3 ∆εs=−4

2 −0.047 −0.027 0.02 −0.053 −0.075 0.02 −0.013 −0.039 −
3 −0.042 −0.010 0.04 −0.036 −0.027 0.06 0.023 0.079 0.070
4 −0.020 0.019 0.06 −0.051 0.022 0.10 −0.030 0.026 −0.02
5 −0.027 0.006 0.05 −0.063 0.001 0.08 −0.046 0.031 −0.04
6 −0.019 0.016 0.05 −0.045 0.023 0.10 −0.078 0.028 −0.05
7 −0.016 0.021 0.06 −0.041 0.033 0.11 −0.070 0.037 −0.04
8 −0.017 0.014 0.02 −0.040 0.021 0.03 −0.068 0.020 −0.10

Table 3. The binding energies differences of lowest flavoured BS with isospin I = 0 and the ground state
with the same value of B and I = 0 or I = 1/2; see (34). The first three columns are for |F | = 1, the next
three columns for |F | = 2, and the next three for |F | = 3. The state with the value of flavour |F | belongs
to the SU(3) multiplet with Tr = |F |/2. In the last column the binding energies differences are shown for
the isoscalar electrically neutral states with S = −B. For |F | ≥ 3 all estimates are very approximate

B ∆εs=−1 ∆εc=1 ∆εb=−1 ∆εs=−2 ∆εc=2 ∆εb=−2 ∆εs=−3 ∆εc=3 ∆εb=−3 ∆εs=−B

2 − − − −0.075 −0.029 0.02 − − − −0.075
3 0.000 0.034 0.07 − − − −0.083 0.002 0.09 −0.082
4 − − − −0.047 0.030 0.09 − − − −0.13
5 −0.003 0.032 0.06 − − − −0.060 0.035 0.12 −0.15
6 − − − −0.044 0.025 0.09 − − − −0.21
7 0.000 0.040 0.07 − − − −0.042 0.068 0.15 −0.20
8 − − − −0.039 0.023 0.03 − − − −0.28

=
|F |(|F |+ 2)

8

(
µF,B − 1
ΘF,BµF,B

− 1
ΘT,B

)

−Tr(Tr + 1)
2ΘT,B

+ Tr|F | µF,B − 1
4ΘF,BµF,B

. (35a)

At large |F | this is approximately given by

EImax − EI=0 	
�I2
F

2ΘT,B
(1− 2cF,B). (35b)

At large B and F the isoscalar states have smaller energy
if cF,B ≤ 0.5; see also Table 1.

Let us now consider the case corresponding to the bulk
of “flavoured matter”, i.e. p = q = B = |F |. Such “multil-
ambda” states with isospin equal to zero have the follow-
ing value of ∆ε for B � 1:

∆ε 	 |F |
[
ωF,1 − ωF,B +

|F |+ 2
8

(
µF,B − 1
ΘF,Bµ2

F,B

− 1
ΘT,B

)

− 3(µF,1 − 1)
8µ2

F,1ΘF,1

]
. (36)

At large |F | the sign of this expression depends on the
sign of the difference (µF,B − 1)/(ΘF,Bµ2

F,B) − 1/ΘT,B .
To draw final conclusions we require the knowledge of the

behaviour of the ratio ΘT,B/ΘF,B at large B. For heavy
flavours, c and b, µF,B � 1 and the second term, (35b),
is negative, unless ΘT,B ∼ µF,BΘF,B which is not real-
istic (we have usually µs ∼ 3, µc ∼ 15 and µb ∼ 73).
So, for heavy flavours it is not possible to obtain, in this
way, the bulk of flavoured matter as quantized coher-
ent multiskyrmions. It should be kept in mind that for
large |F |, say |F | ≥ 3, the “rigid oscillator” model in its
present form cannot be taken seriously: further terms in
the expansion in D†D should be taken into account in the
Lagrangian. And other possibilities remain to be investi-
gated, e.g. flavoured skyrmion crystals.

As in the B = 1 case [26], the absolute values of masses
of multiskyrmions are controlled by the poorly known loop
corrections to their classic mass, or the Casimir energy.
And as has been done for the B = 2 states [18] the
renormalization procedure is necessary to obtain physi-
cally reasonable values of these masses. As the binding
energy of the deuteron is 30MeV instead of the measured
value 2.23MeV we see that ∼ 30MeV characterises the
uncertainty of our approach [17,18]. But this uncertainty
cancels in the differences of binding energies presented in
Tables 2 and 3.
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5 Conclusions

Using rational map ansaetze as starting configurations we
have calculated the static properties of bound skyrmions
with baryon numbers up to 8. The excitation frequencies
for different flavours – strangeness, charm and bottom –
have been estimated using a rigid oscillator version of the
bound state approach of the chiral soliton models. One
notes that, in comparison with strangeness, this approach
works even better for c and b flavours [20,21]. Our previ-
ous conclusion that BS with charm and bottom have more
chance to be bound by strong interactions than strange BS
[17] is reinforced by the present investigation. Estimates
of the binding energy differences of flavoured and flavour-
less states have some uncertainty, of about few tens of
MeV, but the tendency for charm and bottom to be more
strongly bound than strangeness is very clear.

A natural question now arises as to how these results
depend on the choice of the parameters of the model. A set
of parameters, which has been used extensively in the lit-
erature, is, e.g. the set introduced in [9] where the masses
of the nucleon and the ∆ isobar have been fitted in the
massless case and with the physical pion mass, respec-
tively. In view of the large negative contribution of the
loop corrections, or of the Casimir energy, we feel that
this choice of parameters cannot be taken too seriously.
However, the calculations show that our results hold for
this choice too. The energies of the flavour excitations are
somewhat smaller, however: for example, for strangeness
ωs = 255MeV for B = 1 and 249MeV for B = 4, if
we take FK/Fπ = 1.22, Fπ = 108MeV. Similar changes
take place for charm and bottom, and the conclusion that
charmed or bottomed BS have good chances to be stable
against strong interactions remains valid [17].

It should be kept in mind that corrections of the order
of 1/N2

c can lead to some modifications of our results. For
example, the flavour moment of inertia changes [18] lead
to

ΘF → Θ
(0)
F − D†D

F 2
D − F 2

π

8

∫
(1− cf )(2− cf )d3r.(37)

The decrease of the moment of inertia could lead to some
increase of the zero mode quantum corrections.

The apparent drawback of our approach is that the
motion of the system into the “strange”, “charm” or “bot-
tom” directions has been considered independently from
other motions. Consideration of the BS with “mixed”
flavours is possible in principle, but its treatment would
be more involved (see, e.g., [27] where the collective coor-
dinate approach to the quantization of SU(n) skyrmions
has been investigated). It should be noted that we did not
consider here the so-called H-particle and related topics.
Within the chiral soliton approach the H-particle with
B = 2 appears as a soliton on the SO(3) subgroup of
SU(3) [11,12], is a SU(3) singlet and is expected to be
strongly bound; see also the discussion in [19].

Our results agree qualitatively with the results of [28]
where the strangeness excitation frequencies have been
calculated within the bound state approach. The differ-

ence is, however, in the behaviour of excitation frequen-
cies: we have found that they decrease when the baryon
number increases from B = 1 to 4, thus increasing the
binding energy of the corresponding BS. This behaviour
seems to be quite natural: there is an attraction between
K,D or B meson field and a B = 1 nucleon, and the
attraction of a meson by 2, 3 etc. nucleons is greater. At
some value of B saturation takes place. Similar results
hold for ordinary nuclei: the binding energy of a deuteron
is 2.22MeV only, for B = 3 it is about 8MeV, for B = 4
it is already 28MeV, and soon saturation takes place.

There is a further difference between the rigid oscilla-
tor variant of the bound state model we have used here
and the collective coordinate approach of soliton models
studied previously [10–12]. In the collective coordinate ap-
proach involving zero modes of solitons with a rigid or a
soft rotator variant of the model, the masses of baryons
are usually considerably greater than in the bound state
approach when the Casimir energies are not taken into ac-
count [26,29]. One of the sources of this difference is the
presence of a term of orderNc/ΘF in the zero mode contri-
bution to the rotation energy, which is absent in the bound
state model. Recently, it was shown by Walliser, for the
B = 1 sector within the SU(3) symmetrical (mK = mπ)
variant of the Skyrme model [29], that this large contribu-
tion is cancelled almost completely by the kaonic 1-loop
correction to the zero-point Casimir energy which is of the
same order of magnitude, N0

c [29]. This correction has also
recently been calculated within the bound state approach
to the Skyrme model [30].

The charmed baryonic systems with B = 3, 4 were
considered in [31] within a potential approach. The B = 3
systems were found to be very near the threshold and the
B = 4 system was found to be stable with respect to the
strong decay, with a binding energy of ∼ 10MeV.

Experimental searches for the baryonic systems with
flavour different from u and d could shed more light on the
dynamics of heavy flavours in systems with few baryons.
The negative charge fragment seen in the NA52 CERN
experiment [25] may be explained in our approach as a
quantized B = 7 skyrmion with strangeness S = −3 or
−4. The other possibility is B = 6 and S = −6 or −7.
The value of the strangeness can be greater since the rigid
oscillator version of the model we consider here overesti-
mates the strangeness excitation energies.

The threshold for the charm production on a free nu-
cleon is about 12GeV, and for the double charm it is
∼ 25.2GeV. For bottom, the threshold on a nucleon is
∼ 70GeV. However, for nuclei as targets the thresholds
are much lower due to the two-step processes with mesons
in intermediate states and due to the normal Fermi mo-
tion of nucleons inside the target nucleus (see, e.g., [32]).
Therefore, the production of baryons or baryonic systems
with charm and bottom should be feasible in proton ac-
celerators with energies of several tens of GeV, as well as
in heavy ions collisions.

Let us finish by adding that a shortened (and much
less complete) version of this paper is available in [33].
The results obtained recently in [34] within the detailed
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version of the bound state approach are in fair agreement
with ours, but the binding energies obtained in [34] are
smaller than what we have found here. It should be noted
that, different from [34], we have used the empirical values
of flavour decay constants, taken into account the 1/Nc

zero modes contributions to the energy of multibaryons
and have considered only the difference of binding energies
of flavoured BS and of the ground states where many of
the uncertainties cancel out.
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